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Signal spaces 

Discrete-time signals (sequences) 
𝑢: 𝑛 ∈ ℤ → 𝑢𝑛 ∈ ℂ 

– If ∀𝑛 ∈ ℕ, 𝑢𝑛 ∈ ℝ, then 𝑢 is referred to as a real 
sequence 

Continuous-time signals (functions) 
𝑓: 𝑥 ∈ ℝ → 𝑓(𝑥) ∈ ℂ 

– If ∀𝑥 ∈ ℝ, 𝑓(𝑥) ∈ ℝ, then 𝑓 is referred to as a real 
function 
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Signals with bounded support 

Finite signals (FS): for a given 𝑁 ∈ ℕ, 
𝑢: 𝑛 ∈ 0,1, … , 𝑁 − 1 → 𝑢𝑛 ∈ ℂ 

Equivalently,  𝑢 ∈ ℂ𝑁 

If 𝑢 ∈ ℝ𝑁, we have a real FS 

Periodic signals (PS): 

𝑓: 𝑥 ∈ −
1

2
,
1

2
→ 𝑓(𝑥) ∈ ℂ 

As for functions, if ∀𝑥 −
1

2
,
1

2
, 𝑓(𝑥) ∈ ℝ, we say that 𝑓 is 

a real PS 
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Bounded sequences 
𝑢 ∈ 𝑙∞ ⇔ 𝑢 ∞ = sup

𝑛
𝑢𝑛 < +∞  

 

Square-summable sequences 

 𝑢 ∈ 𝑙2 ⇔ 𝑢 2 =  𝑢𝑛
2

𝑛 < +∞ 

 

Absolutely summable sequences 

 𝑢 ∈ 𝑙1 ⇔ 𝑢 1 =  |𝑢𝑛|

𝑛

< +∞ 

Sequences spaces 
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ℓ1 ⊂ ℓ2 ⊂ ℓ∞ 
 
 
𝑢 ∈ ℓ2, 𝑣 ∈ ℓ2 ⇒ 𝑢 ⋅ 𝑣 ∈ ℓ1 
𝑢 ∈ ℓ1, 𝑣 ∈ ℓ∞ ⇒ 𝑢 ⋅ 𝑣 ∈ ℓ∞ 
 

 
 
 
 
 

ℓ1 

ℓ2 

ℓ∞ 

Sequences spaces 
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• We have the following table 
 

 
 
 
 

• Practical rule: 
ℓ1 ∗ ℓ𝑝 → ℓ𝑝 
ℓ2 ∗ ℓ2 → ℓ∞ 

• The other cases, the convergence is not guaranteed 
(example : convolution of 2 constant-valued series) 
 

 
 
 

Convolution 

∗ ℓ1 ℓ2 ℓ∞

ℓ1 ℓ1 ℓ2 ℓ∞

ℓ2 ℓ2 ℓ∞ −
ℓ∞ ℓ∞ − −
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Signal spaces 
𝐿1(ℝ) : absolutely integrable functions 

𝑓 ∈ 𝐿1 ℝ ⇔  𝑓 𝑥 d𝑥
ℝ 

< +∞ 

 

𝐿2(ℝ) : finite energy (square-integrable) functions 

𝑓 ∈ 𝐿2 ℝ ⇔  𝑓 𝑥 2d𝑥
ℝ 

< +∞ 

 

𝐿∞(ℝ) : bounded functions 

𝑓 ∈ 𝐿∞ ℝ ⇔ ∃𝐶 ∈ ℝ: 𝑓 𝑥 ≤ 𝐶 a.e. 
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Signal spaces for finite signals 

• Any finite signal belongs to a normed space, 
namely, ℂ𝑁 or ℝ𝑁 

• For periodic signals, we have 

 𝐿∞ −
1

2
,
1

2
⊂ 𝐿2 −

1

2
,
1

2
⊂ 𝐿1 −

1

2
,
1

2
 

𝑳∞ 

𝑳𝟐 

𝑳𝟏 
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Systems 

• A system is an operator transforming a signal into 
another signal 

• Typically, we consider systems that transform 
functions into functions, sequences into 
sequences, PS into PS and FS into FS (exceptions: 
A/D and D/A converters) 

• Continuous system: 
 𝑇: 𝑓 → 𝑔 = 𝑇[𝑓]  

• Discrete system: 
 𝑇: 𝑢 → 𝑣 = 𝑇[𝑢]  

• Formally, the same notation 
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Linear Time-Invariant  
(LTI) Systems 

1. Linearity: 
∀𝛼, 𝑓:   𝑇 𝛼𝑓 = 𝛼𝑇 𝑓  

∀𝑓1, 𝑓2:   𝑇 𝑓1 + 𝑓2 = 𝑇 𝑓1 + 𝑇 𝑓2  

2. Time-invariance: 
∀𝑓, Δ, 𝑇 𝑓 = 𝑔 ⇒ 𝑇 𝑓Δ = 𝑔Δ 

Where the notation 𝒇𝜟 stands for a shifted version 
of 𝒇:  𝑓Δ 𝑡 = 𝑓(𝑡 − Δ) 

The possible values for Δ and the meaning of (𝑡 − Δ) 
depend on the signal space. 
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Examples 

𝑇 𝑢 = 𝑣 
𝑣𝑛 = 𝑢𝑛 + 𝑢𝑛−1 + 3𝑢𝑛+1 
𝑣𝑛 = 𝑢2𝑛 
𝑣𝑛 = max 𝑢𝑛, 𝑢𝑛−1, 𝑢𝑛+1  

 
𝑇 𝑓 = 𝑔 

𝑔(𝑡) =  𝑓 𝑥 𝑑𝑥
𝑡+1/2

𝑡−1/2

 

𝑔 𝑡 = 𝑓 𝑡 − 1  
𝑔 𝑡 = 𝑓 𝑡 cos 2𝜋𝑓0𝑡 + 𝜙  
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Impulse response of a LTI 

𝛿𝑛 =  
1 if 𝑛 = 0
0 if 𝑛 ≠ 0

 

Impulse response of 𝑇 : ℎ = 𝑇 𝛿  

Hypothesis : ℎ ∈ ℓ1 

Linear system as convolution: use 𝑢 =  𝑢𝑛𝛿𝑛𝑛   

𝑣 = 𝑇 𝑢 = 𝑇  𝑢𝑛𝛿
𝑛

𝑛

=  𝑢𝑛𝑇 𝛿𝑛

𝑛

=  𝑢𝑛ℎ
𝑛

𝑛

 

𝑣𝑚 =  𝑢𝑛ℎ𝑚
𝑛

𝑛

=  𝑢𝑛ℎ𝑚−𝑛

𝑛

= 𝑢 ∗ ℎ 𝑚 
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Stable LTI 

• We consider the BIBO-stable systems 

– BIBO: bounded input-bounded output 

 

• Necessary and sufficient condition: 
ℎ ∈ ℓ1 
ℎ ∈ 𝐿1 
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Fourier waves 

• Fourier waves (FW) at frequency 𝜈 have the 
following expression : 

 

In ℤ, 𝑛 → 𝑒2𝑖𝜋𝜈𝑛  with 𝜈 ∈ −
1

2
,
1

2
 

In ℝ, 𝑥 → 𝑒2𝑖𝜋𝜈𝑥  with 𝜈 ∈ ℝ 

 

An LTI always transforms a FW into a FW with 
the same frequency 
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Proof (sequences) 

𝑢𝑛 = 𝑒2𝑖𝜋𝑛𝜈   
𝑢𝑛
𝑚 = 𝑒2𝑖𝜋(𝑛−𝑚)𝜈  

 

𝑇 𝑢 𝑛 =  ℎ𝑚𝑢𝑛
𝑚

𝑚

=  ℎ𝑚𝑒2𝑖𝜋(𝑛−𝑚)𝜈

𝑚

= 

= 𝑒2𝑖𝜋𝑛𝜈  ℎ𝑚𝑒−2𝑖𝜋𝑚𝜈

𝑚

= 𝑢𝑛 ℎ (𝜈) 

 ℎ (𝜈)= ℎ𝑚𝑒−2𝑖𝜋𝑚𝜈
𝑚  
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Example 

ℎ𝑛 =  
1 if 𝑛 ∈ {−𝑁,−𝑁 + 1,… ,𝑁 − 1,𝑁}

0 otherwise
 

 

Find ℎ (𝜈) 
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ℎ 𝜈 =  𝑒−2𝑖𝜋𝜈𝑚 =

𝑁

𝑚=−𝑁

 

  

 =  
2𝑁 + 1                if 𝜈 = 0
sin[ 2𝑁+1 𝜋𝜈]

sin 𝜋𝜈
  otherwise

 



Continuous systems 

Using the Dirac’s delta, we can extend the 
previous results to continuous systems: 

ℎ = 𝑇 𝛿   

𝑔 𝑥 = 𝑇 𝑓 𝑥 = ∫ ℎ 𝑡 𝑓 𝑥 − 𝑡 𝑑𝑡 

 

𝑇 𝑒2𝑖𝜋𝑡𝜈 = ℎ (𝜈) 𝑒2𝑖𝜋𝑡𝜈 

ℎ 𝜈 =  ℎ 𝑡 𝑒−2𝑖𝜋𝜈𝑡𝑑𝑡
ℝ
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Summary 

• If 𝑇 is an LTI system: 

– It is characterized by its impulse response. 

– It is characterized by its frequency response. 

• The impulse response defines the operation 
of the LTI via the convolution  

• The frequency response defines the LTI via 
its operation on FWs 
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LTI on Finite signals 

 

• To transpose the theory of LTI to these signals, it is 
enough to define : 

– Linear operations (obvious)  

– Time shift: 
 Shift on {0, … , 𝑁 − 1} 

– Fourier waves 
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Time shift for a finite signal 

𝑢𝑚
𝑛 = 𝑢𝑛−𝑚 for time sequences 

For finite signals, 𝑛 −𝑚 can be outside  
{0,1, …  𝑁 − 1} 

Solution : redefine the sum and difference in  
0,1,…  𝑁 − 1  

 
𝑛 ⊕𝑁 𝑚 =  (𝑛 + 𝑚) Mod 𝑁 

We continue to denote 𝑛 + 𝑚 when there is no 
ambiguity 
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Time shift for a finite signal 

𝑢𝑚
𝑛 
= 𝑢 𝑛−𝑚 Mod N  

Interpretation : 

• Define the time sequence 𝑢 𝑛 =  𝑢
 𝑛 Mod 𝑁  

  

• A period of 𝑢  coincides with 𝑢 

• We define 𝑢𝑚 as a period of 𝑢 𝑚 

• This guarantees ∀𝑚 ∈ ℤ, 𝑢𝑚 −𝑚 = 𝑢  

• The shift defined by this formula is called 
Circular shift (circular permutation) 
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Example of circular shift 
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LTI for finite signals 

• For any finite signal 𝑢 one can write : 
 
𝑢 = 𝑢0

0 + 𝑢1
1 +  …𝑢𝑁−1𝛿

𝑁−1  =   𝑢𝑛
𝑛  

 
Then, by definition of LTI, 

𝑣 = 𝑇 𝑢 =  𝑢𝑚𝑇[𝛿𝑚]

𝑁−1

𝑚=0

=  𝑢𝑚ℎ𝑚
𝑁−1

𝑚=0

 

Where ℎ𝑚 is the time-shifted version of the 
impulse response 𝑇[𝛿] 
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LTI for finite signals 

• We find: 

𝑣𝑛 =  𝑢𝑚 ℎ𝑚 𝑛

𝑁−1

𝑚=0

=  𝑢𝑚ℎ(𝑛−𝑚) Mod 𝑁 = 𝑢⊛𝑁 ℎ 𝑛

𝑁−1

𝑚=0

 

 

This is the  circular convolution or convolution of finite 
signals 

It has all the properties of an ordinary convolution : 

Commutativity, associativity, linearity 
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Circular and ordinary convolution 

Let 𝑢 et ℎ be finite signals of length N 
Let 𝑢  be the sequence defined by periodization of 𝑢 

∀𝑛 ∈ ℤ, 𝑢 𝑛 = 𝑢𝑛 Mod 𝑁 
 
Let 𝑣 = 𝑢 ⊛𝑁 𝑣 be the circular convolution of 𝑢 and ℎ 

𝑣𝑛 =  ℎ𝑚𝑢(𝑛−𝑚) Mod 𝑁 =

𝑁−1

𝑚=0

 ℎ𝑚𝑢 (𝑛−𝑚) 

𝑁−1

𝑚=0

= ℎ ∗ 𝑢 𝑛 

 
Here we use the same notation ℎ for a finite support sequence 
and a finite signal 
The circular convolution is therefore the same as an ordinary 
convolution with a periodic (periodized) signal 
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Formulas for Fourier waves 

• It is easy to check that the following functions satisfy the 
properties of the Fourier waves: 

𝜙: 𝑛 ∈ 0,1,… , 𝑁 − 1 → 𝑒2𝑖𝜋
𝑘

𝑁
𝑛  

with 𝑘 ∈ {0,1, … , 𝑁 − 1} 

We call wave frequency the rational number 
𝑘

𝑁
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Application of an LTI on Fourier waves 

𝜙𝑛 = 𝑒2𝑖𝜋
𝑘
𝑁𝑛 

𝑇 𝜙 𝑛 =  ℎ𝑚exp{2𝑖 𝜋
𝑘

𝑁
𝑛 −𝑚 Mod 𝑁 }

𝑁−1

𝑚=0

 

 
𝑛 − 𝑚  Mod 𝑁 = 𝑛 −𝑚 + 𝑝𝑁 

 

𝑇 𝜙 𝑛 =  ℎ𝑚exp{2𝑖 𝜋
𝑘

𝑁
𝑛 −𝑚 }

𝑁−1

𝑚=0

= 

= 𝜙𝑛  ℎ𝑚exp(−2𝑖 𝜋
𝑘

𝑁

𝑁−1

𝑚=0

𝑚) = 𝐶(𝑘)𝜙𝑛 
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