AV Transport

Background

jean.lefeuvre@telecom-paristech.fr E506

Traffic Forecasts by Cisco

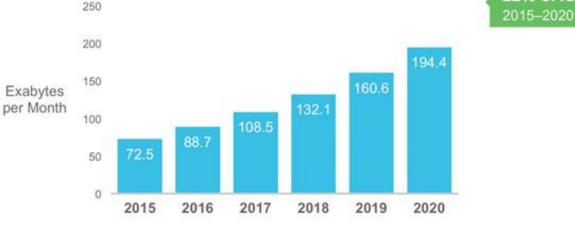
Annual IP traffic

- 2016: > 1 ZB (zettabyte) = 10²¹ bytes = 1 billion TB
- 2020: 2.3 ZB

Mobile vs PC Traffic

- 2015: 53% PC, 8% Mobile
- 2020: 29% PC, 30% Mobile

Wireless+Mobile:

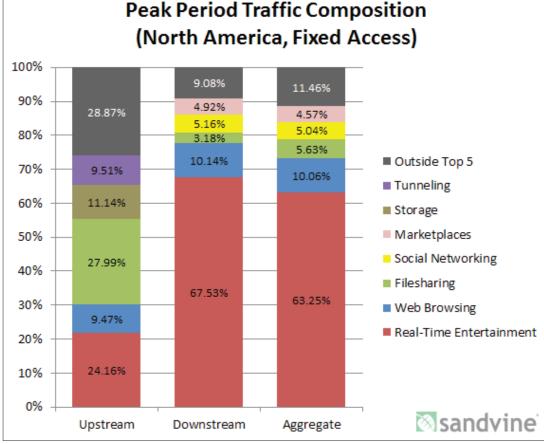

- 2015: 52%
- 2016: 66%

Connected devices

- 2015:16.3 billion (> 2x world population)
- 2020: 26.3 billion (3x world population)

Hours of video in 2020

 5 million years to watch the amount of video that will cross global IP networks each month

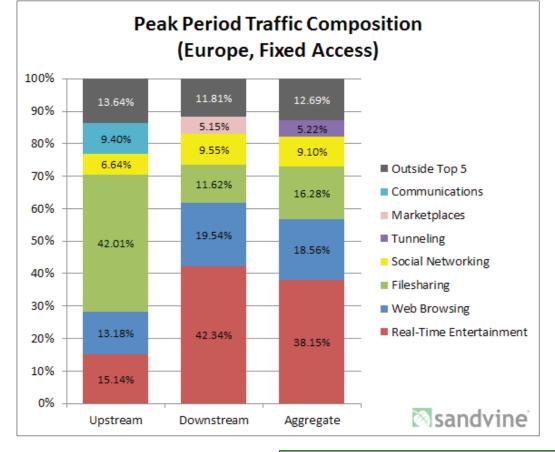


22% CAGR

Internet Traffic Shares: North America

Downstream		
Application	Share	
Netflix	34.89%	
YouTube	14.04%	
HTTP	8.62%	
Facebook	2.98%	
BitTorrent	2.80%	
iTunes	2.77%	
MPEG - OTHER	2.66%	
Amazon Video	2.58%	
SSL	2.14%	
Hulu	1.41%	
	74.89%	

Monthly Consumption - North America, Fixed Access		
	Median	Mean
Upstream	1.8 GB	8.5 GB
Downstream	20.4 GB	48.9 GB
Aggregate	22.5 GB	57.4 GB


Sandvine 2015

2015: 70%

AV traffic 2012: 35%

Internet Traffic Shares: Europe

Downstream	
Application	Share
YouTube	22.38%
HTTP	17.27%
BitTorrent	10.39%
Facebook	7.84%
SSL	4.56%
MPEG - OTHER	3.57%
Netflix	3.44%
RTMP	2.31%
Flash Video	1.90%
PC: Valve's Steam Service	1.73%
	75.38%

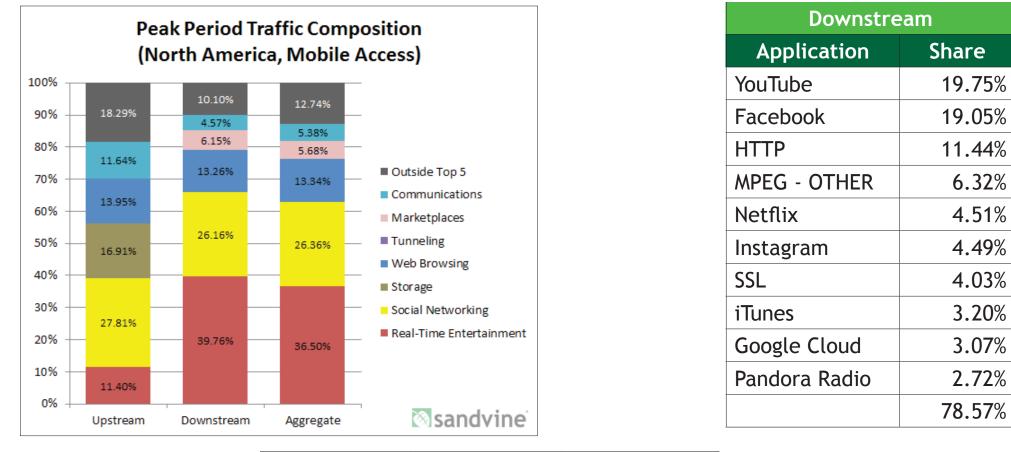
Monthly Consumption - Europe, Fixed Access			
Median Mean			
Upstream	1.5 GB	5.1 GB	
Downstream	8.7 GB	23.1 GB	
Aggregate	10.1 GB	28.2 GB	

Sandvine 2015

4 10/01/2018

Internet Traffic Shares: Asia

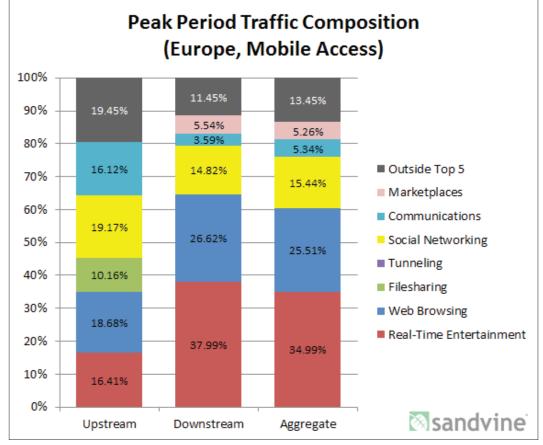
Downstream		
Application	Share	
YouTube	23.70%	
BitTorrent	22.78%	
НТТР	10.94%	
RTSP	7.43%	
Facebook	3.22%	
MPEG - OTHER	2.93%	
QVoD	1.83%	
Flash Video	1.82%	
SSL	1.75%	
RTMP	1.74%	
	78.14%	


AV Transport

Monthly Consumption - Asia-Pacific, Fixed Access		
Median Mean		
Upstream	2.9 GB	13.4 GB
Downstream	17.9 GB	31.7 GB
Aggregate	20.8 GB	45.1 GB

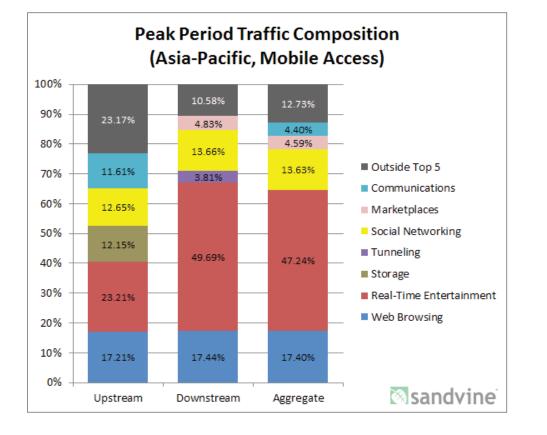
Sandvine 2015

TELECOM ParisTech


Mobile Internet Traffic Shares: North America

Monthly Consumption - North America, Mobile Access			
Median Mean			
Upstream	19.7 MB	75.4 MB	
Downstream	99.1 MB	506.5 MB	
Aggregate	118.4 MB	521.9 MB	

Mobile Internet Traffic Shares: Europe


Downstream		
Application	Share	
HTTP	24.60%	
YouTube	20.89%	
Facebook	12.16%	
MPEG - OTHER	3.77%	
SSL	3.06%	
Flash Video	3.03%	
BitTorrent	3.01%	
Google Cloud	1.90%	
Google Market	1.67%	
iTunes	1.61%	
	75.70%	

Monthly Consumption - Europe, Mobile Access			
Median Mean			
Upstream	15.1 MB	69.5 MB	
Downstream	108.8 MB	380.3 MB	
Aggregate	122.1 MB	449.5 MB	

Mobile Internet Traffic Shares: Asia

Downstream	
Application Share	
YouTube	17.46%
HTTP	15.59%
Facebook	9.48 %
MPEG - OTHER	7.12%
SSL	5.37%
Google Market	3.56%
Dailymotion	2.59%
Instagram	1.82%
iTunes	1.54%
Google Cloud	1.47%
	66.00%

Monthly Consumption - Asia-Pacific, Mobile Access			
Median Mean			
Upstream	261.7 MB	143.1 MB	
Downstream	298.1 MB	1.0 GB	
Aggregate	339.2 MB	1.1 GB	

AV Traffic Continuous Growth

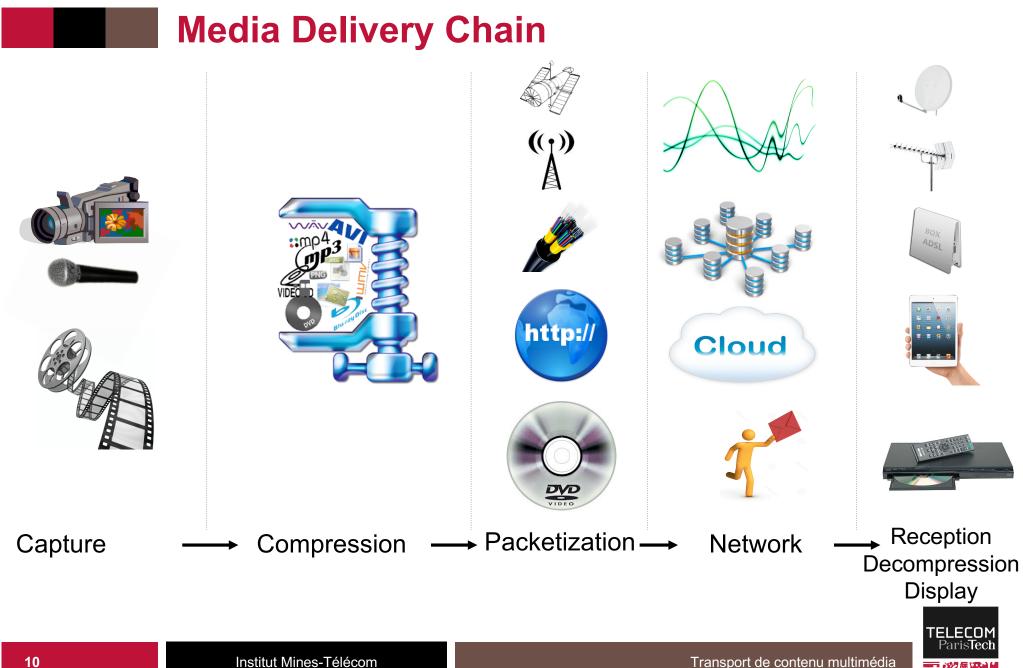
New Formats with more data to send

- 4K, 8K Video
- High Frame Rate
- High bit depth, HDR
- 3D audio (22+ channels)

New Services

- Video Conferencing
- Game streaming platforms
- Interactive Videos
- Virtual Reality Streaming

More devices with heterogeneous capabilities


- Different compression formats supported
- Different screen sizes
- Different audio loudspeakers layouts
- => Multiple encoding/delivery of the media

AV Transport

Service Types

- Direct or « live »
 - Radio, TV satellite or terrestrial
 - Internet live

Audio and Visio-conference

- Fixed and Mobile IP Phone
- Skype / FaceTime / WebRTC

Video on demand

- User Content (ex: YouTube)
- VoD channels (Netflix, ...)
- Catch-up & Replay

Storage / Archiving

• DVD, Blu-Ray

Specificities

- All users get the same data
- Real-time but constant latency
- Lossy
- Data unique per call (and user)
- Real-time and very low latency required
- Lossy
- Large amount of data
- Not real-time, large latency possible
- Lossless or lossy
- No requirements on delivery speed
- Lossless

AV Transport

Systems Definitions

Media Objects

Represents a media

- Audio
- Video
- Subtitles
- Vector Graphics 2D or 3D (Flash, SVG, VRML, BIFS)
- Various Meta-data
 - Sensors: GPS, temperature, pressure
 - Annotations: regions of interest, text, sometimes with 2D or 3D positioning in the video stream
 - Programmatic instructions or data: Java, JSON, ...

Media and Time

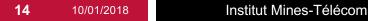
- Static: HTML pages, image, user interface sound
- Dynamic: media that changes over time

Media Stream

- Succession (in time) of media data
- Most of the time, media object ⇔ media stream
 - Exception with layered coding (video, 3D audio): 1 media object = N media streams

Succession of Access Unit

Access Unit


- ⇔ Each « state » or update of the media
- « smallest data chunk to which a unique time can be assigned »

Examples of AU

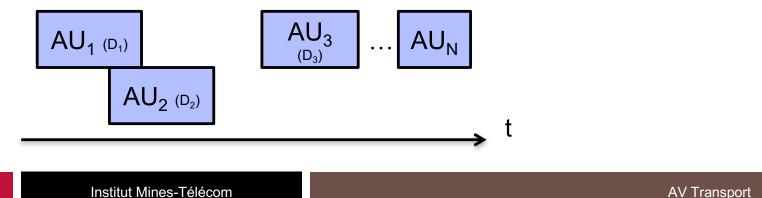
- Progressive Video: 1 frame
 - Interlaced Video: 1 field or 1 frame
- Audio: N (>=1) samples
- Subtitle:
 - Bitmap: One image (bitmap subtitle)
 - Text: N (>=1) lines of text

Rate of access units (or Frame Rate)

- Constant Frame Rate (CFR): same time interval between AUs
- Variable Frame Rate (VFR): different time intervals
- Terminology mostly used for video and animations

Timing of Access Units

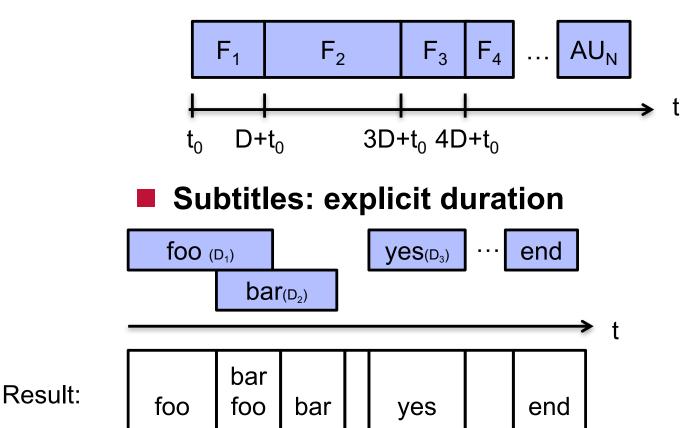
Implicit Duration


- Video, Audio, text, meta-data •
- No "holes" in the timeline, an AU lasts until the next AU begins ۲
- Typically used for CFR/VFR media

AU ₁	AU ₂	 AU _N	
			→ †

Explicit Duration

-


- Text, meta-data •
- Can express empty moments in the media timeline •
- Can be hard to express as implicit duration (editing of media data often required) •
- Typically used for VFR media ٠

Examples

Variable video frame rate : Implicit Duration

Uncompressed streams (refresher)

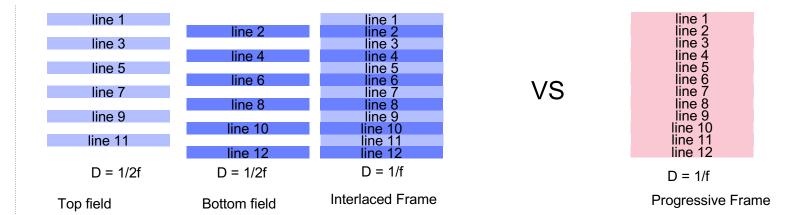
Video Characteristics

- Resolution (width x height)
 - Ex: 640x480,720x576,1280x720,1920x1080
- Sampling Format
 - Ex: RGB, YUV420, YUV422, YUV444
- Color Bit Depth
 - Ex: 8, 10, 12 bit per color channel
- Color Gamut
 - Ex: SDR (BT.720), HDR (BT.2020), ...
- Frame rate
 - Ex: 23.976, 24, 25, 29.97, 30, 50, 60, 100, 120
 - Interlaced (i) or progressive (p)
 - Ex: 720p, 1080i

Quick numbers

- Video frame 1080p YUV420: 3.1 Mbytes
- Video 720p50 YUV420: 553 Mb/s

Capture


Capture: Interlaced Video

Capture

Transport de contenu multimédia

18

Uncompressed streams (refresher)

- Sample Rate in Hz (i.e. capture frequency)
 - Ex: 44100, 48k, 24k, 22050, 96k
- Sampling Format
 - Ex: 8 bit int, 16 bit int, 24 bit int, 32 bit float
- Channels and their positioning
 - Ex: stereo, 5.1, 7.2, 22.2
- Ambisonic representations

Quick numbers

• audio stereo 16bpc 44.1 KHz: 1.4 Mbps

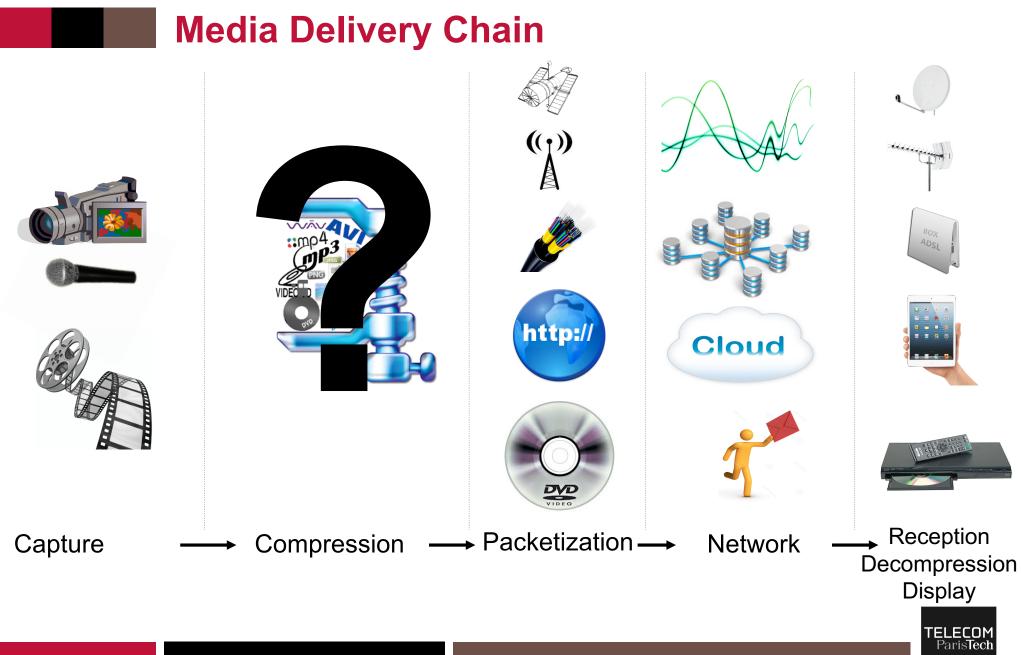
Capture

19

AV Transport

Uncompressed streams (refresher)

Text / Subtitle Characteristics


- Format: bitmap or text
- For bitmap formats
 - Compression method, color palette
- For text formats
 - Character encoding (UTF8, ASCII)
 - Representation method: SRT, WebVTT, TTXT (iTunes)

Quick numbers

- DVB subtitle: 50 to 100 kbps
- SRT: << 1 kbps

Capture

Network Characteristics

Network

Satellite and Terrestrial Broadcast

- Losses without retransmissions
 - FEC « Forward Error Correction »
- Fixed bandwidth available
- Fixed latency

IP Network

- Managed:
 - Few losses, low latency and network jitter
 - Bandwidth guaranteed
- General Internet:
 - losses, important jitter and latencies
 - Variable bandwidth
- Physical support
 - No losses
 - Fixed bandwidth

How to choose the right compression? **Application type** >> 100 Mbps Movie Theatre (~= lossless ((1)) compression) **TV Broadcast** VoD (variable bitrate) **Network Type** Digital TV : MPEG-2 or http:// **MPEG-4** compression **IP/HTTP** More codecs and transport possible Depends on target devices << 100 Mbps Transmission Capture

Compressed Streams

Different needs:

- Reduce the bitrate: audio, video, animations
- Change modality: text->images

Codec

 Entity in charge of <u>co</u>ding and or <u>dec</u>oding the signal between a compressed and an uncompressed representation

Coding modes

- Constant Bit Rate (CBR): output rate of the encoder is constant
- Variable Bit Rate (VBR): output rate of the encoder can vary
- Compression
- Capped VBR: VBR used but maximum bitrate is set

Random Access in decoding process

Decoding a stream from any moment in time

- Some AUs have coding dependencies to past AUs
- Need to identify «random access point » AUs
 - with no coding dependencies
 - After which subsequent AUs in display order can properly be decoded
- This may imply
 - rewinding in a stream to get previous RAP
 - Waiting for the next RAP
- Audio, Text, Images, Meta-data
 - Usually every AU is a RAP
- Video, compressed graphics
 - Not every AU is a RAP

Compression

AV Transport

Codec Configuration

Most modern codecs

- Video: since MPEG-4 part 2 (1998)
- Audio: Since 11C (1997)
- Other: depend on format

Fixed data chunk

- Stream properties
 - Resolution, bit depth
 - Sample rate, channel configuration
- Codec configuration
 - Profile: subset of all tools in standard
 - Level: various limits on the subset (max size, rate ...)
 - Other
- Decoder cannot be configured without this !

Located

- In the stream: usually with each RAP AU
- Outside the stream: depends on the transport protocol

Compression

AV Transport

Audio Coding Specificities (refresher)

Basic principles

- Remove perceptually irrelevant signals
- Remove redundancies
- This implies working on much more than one sample!

Audio Coding Window

- Audio codec encodes N audio samples at once
- This defines the access unit for the compressed stream i.e., 1 Audio AU IN Audio samples
- Examples
 - MP3: 576 or 1152 samples per AU
 - AAC: 1024 samples per AU

Random Access

- (most codecs) All AUs are RAP
- There can be dependencies between two consecutive AUs, but usually (e.g. most codecs) the second AU can still be decoded, although not perfectly

Compression

Video Coding Specificities (refresher)

Basic principles

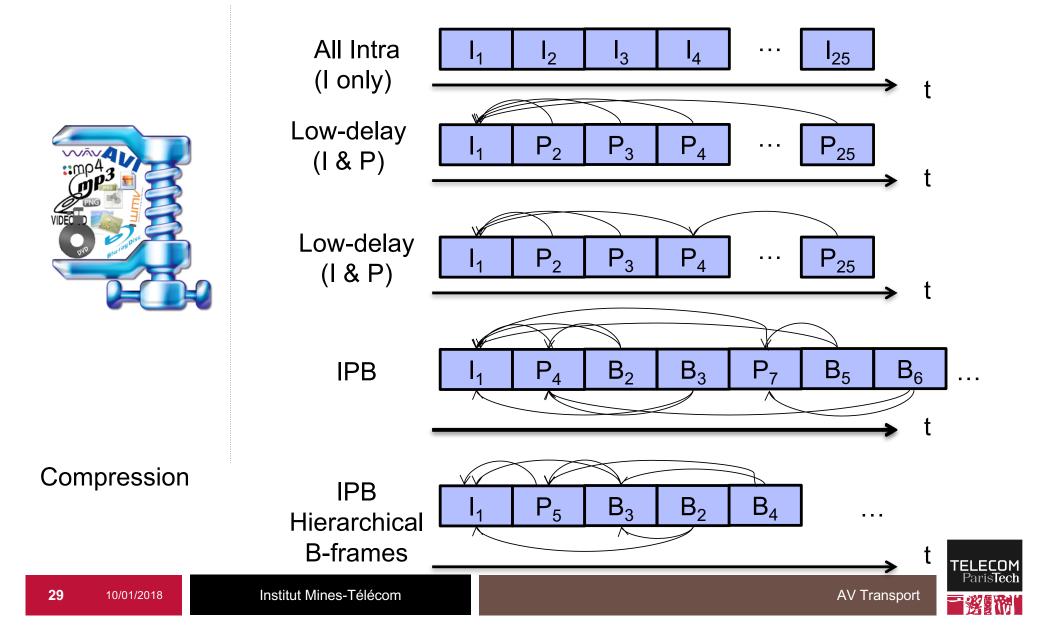
- Remove redundancies by locating similar pixels inside a frame or between frames
- Some frames do not depend on any other frame for the decoding (intra frames)
- Better efficiency is achieved when using reference frames from the past and the future
 - Knowing "future frames" at the encoder implies buffering of many frames, hence higher latency
 - Frames are not always delivered in presentation order

Group of picture (or GOP)

• Sequence of picture, in decode order, starting with an I-frame, up to but excluding the next I-frame

B-pictures or Bidirectional Pictures

- Pictures using frames from the future and from the past for reconstruction
- In both AVC and HEVC, B-pictures can be used as reference pictures for other B
- If B-pictures, decoding order != presentation order



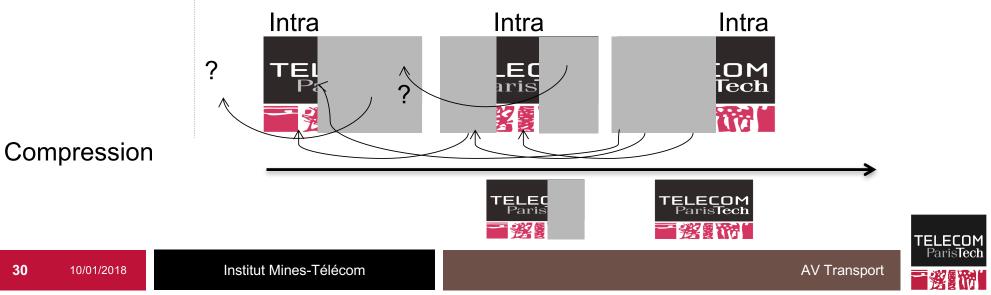
Compression

28

AV Transport

Example of GOPs

Random Access in video


30

Point at which decoding may start

I-frame (before AVC), IDR (AVC, HEVC)

Gradual Decoding Refresh

- Rebuild reference image over N frames without any previous RAP
- Smooth data rate (avoid burst of I-frame)
- Allows gradual random access (partially correct) after the RAP

Typical bitrates

Terrestrial Digital TV

- SD program: 4 Mbps in MPEG-2
- HD program: 8 Mbps in AVC, 4 Mbps in HEVC
- UHD program: 16->22 Mbps in HEVC, 30 Mbps + in AVC

Typical Netflix rates (AVC + AAC)

- 512x384: 560 Kbps, 750 Kbps
- 640x480: 1050 Kbps, 750 Kbps
- 720x480: 1750 Kbps
- 1280x720: 3 Mbps, 2.35 Mbps
- 1920x1080: 5.8 Mbps, 4.3 Mbps

Audio

- 128->512 kbps for stereo MP3
- 64->256 kbps for stereo AAC or AC3
- 220->1200 kbps for FLAC
- cf <u>http://www.digitalbitrate.com</u>

AV Transport

Synchronization

Intra Stream Synchronization

Correct playback of one media

• Audio, video, text, ...

Render AUs at the right time

• Ex: video 25 FPS -> one frame every 40 ms

Deal with AU losses

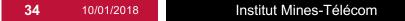
• Numbering or assigning a time

Frames with variable durations (subtitles)

- \Rightarrow Numbering is not enough
- \Rightarrow Assign a presentation/rendering time to each AU

Synchronization: Core Concepts

Time Scale


- Number of ticks in one second
- Ex for 24 FPS video: 24, 24000, 90000 ticks/s

Time Stamps

- Rational Number (not real)
- T_{sec} = TimeStamp / TimeScale
- Precision errors if bad time scale

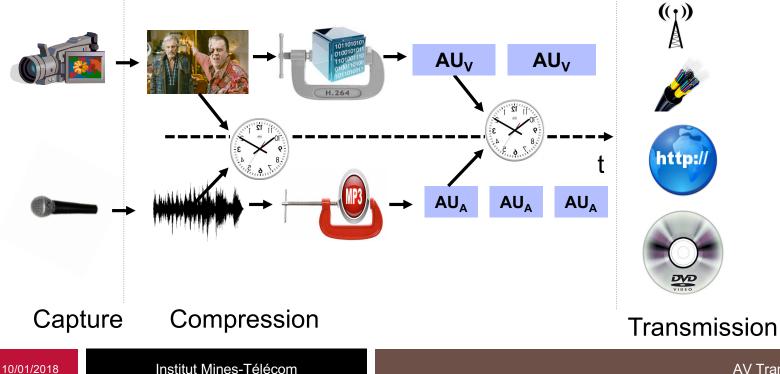
Clock

- Reference time to which timestamps are compared
- May be explicit (RTP, MPEG-2 TS)
- May be implicit (eg, first AU TimeStamp = 0), mostly for files
- Presentation Time or Composition Time
 - PTS, CTS, RTP TS
 - Time at which the frame data shall be rendered/presented

Importance of the time scale

Example with audio (AAC)

- Coding window 1024 samples
- Capture Sample rate 44100 Hz
- Window length 1024/44100=0,023219954648526
- TimeScale 1000, AU TimeStamps:
 - $-TS_0: 0: == real sampling time$
 - TS_2 : 23: < real sampling time
 - $-TS_3$: 46: < real sampling time
 - $-TS_4$: 69: < real sampling time
 - $-TS_5$: 93: > real sampling time
- TimeScale 44100, AU TimeStamps:
 - $-TS_x$: x*1024: == real sampling time


Inter Stream Synchronization

Correct Playback of a set of media

- Audio + Video •
- Audio + Text, Video + Text •
- AV + application, ... •

Different sampling frequencies per media

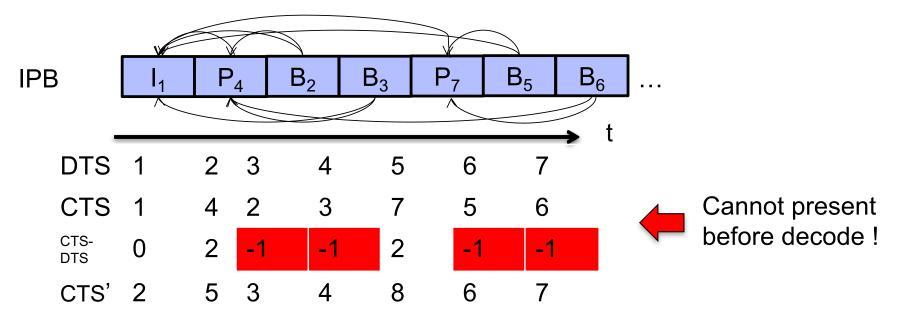
- 25 FPS Video: one frame every 40 ms •
- AAC 44.1kHz: one frame every ~23.22 ms •

Inter Stream Synchronization Strategies

Defining a common time base

- Synchronization by comparing timestamps of each AU
- Use a time scale introducing few rounding errors (least common multiple, ...)
- Synchronization done at the source
 - -Not practical if more than one source

Correlate different time bases


- Identify a common synchronization time anchor $T_{\rm origin}$ for each media and its corresponding $T_{\rm media}$
 - Implicit (0-based) in most file formats
 - Or using world clock in other cases (cf RTP)
- Synchronize AUs by comparing (TimeStamp_{AU} T_{media}) / timescale_{Media}

AV Transport

DTS: Decoding Time Stamp

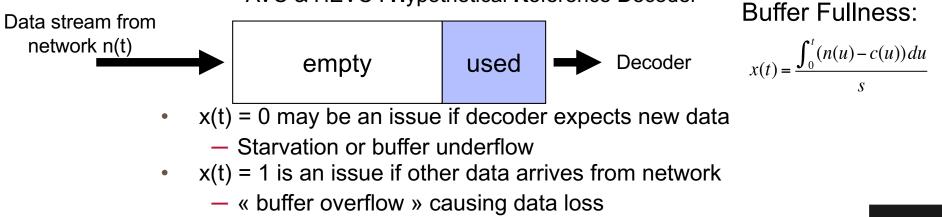
- Frames are not always decoded in the order of presentation
 - Bi-directional video coding: B-frame
 - If same order, DTS ⇔ CTS

CTS needs adjustment to always have CTS>DTS

 This reflects the buffering, at the encoder side, of N frames for bi-directional prediction

AV Transport

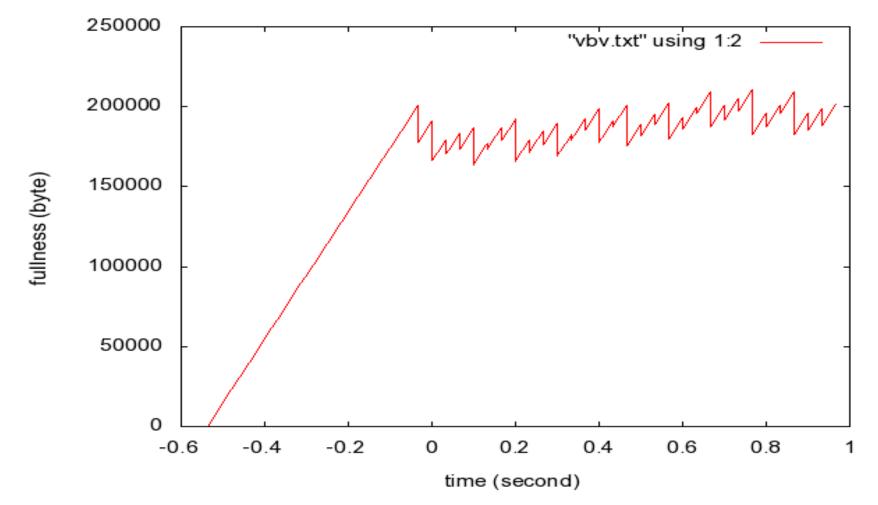
10/01/2018


Synchronization and buffers

Constrained Systems

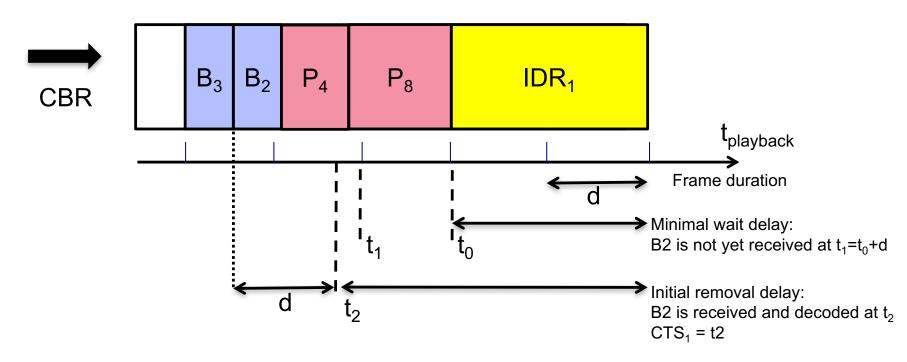
- Low, fixed memory available at the input of the decoder
- Typical cases
 - Set-top Boxes MPEG-2 TS chips
 - Embedded video systems

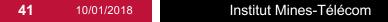
Buffer Model


- allows for the encoder to control how much of the decoder's memory is available
 - Avoid buffer overflow
- Terminology
 - MPEG-2: Video Buffer Verifier
 - AVC & HEVC : Hypothetical Reference Decoder

Buffer Fullness example

buffer fullness


http://codesequoia.wordpress.com/2010/04/19/buffering-delay-and-mpeg-2-transport-stream/


TELECOM

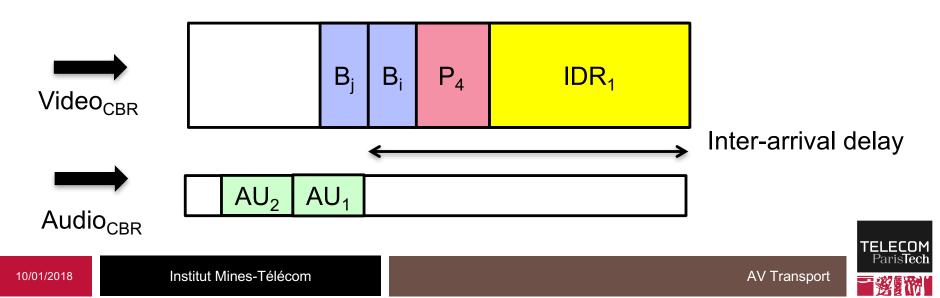
Buffer in compression

CBR = Constant Bit Rate

- However frames have different sizes: S(I) > S(P) > S(B)
- CBR \Leftrightarrow decoder input rate constant but leveled across different frames
- However frames are usually at constant frame rate ??
- Decoding Buffer solves the issue

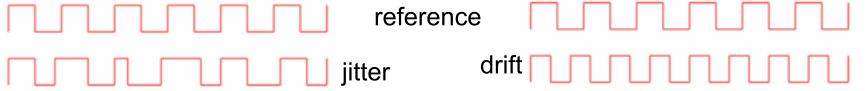
TELECOM

Buffer levels

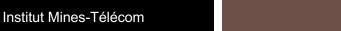

42

Trade-off between memory costs and quality

- MPEG-2 Video: 0,7 sec
- AVC: max 4 to 10 sec
 - 1 to 2 sec for TV broadcast


Inter-Stream Synchronization

- First bytes of video frame sent much before the DTS to fill-up the buffer
- However audio frames don't have this buffer management issue (low frame size and ~constant)
 - Decoding as soon as received



System clock jitter

Frames not displayed at regular interval

System clock drift

- $Clock_{DEC}(t) < Clock_{ENC}(t)$
 - AUs are not removed fast enough: buffer overflow, frame loss
 - Longer playback
- $Clock_{DEC}(t) > Clock_{ENC}(t)$
 - AUs are removed too fast : buffer under-run, frame freeze
 - Shorter playback
- Problematic if multiple devices play the content
 - Conferencing systems
 - Second screen applications
 - Multiple audio systems

10/01/2018

Trusting a clock

Checking system clock

- Different devices use different time servers
 - Not always in sync !
- UTC Drift can be important on most hardware
 - A few seconds/day is quite common
 - Check your device UTC sync at http://time.is

Use audio hardware rather than system clock

• But audio hardware clocks drift too ...

Example: Mobile device clock drifts

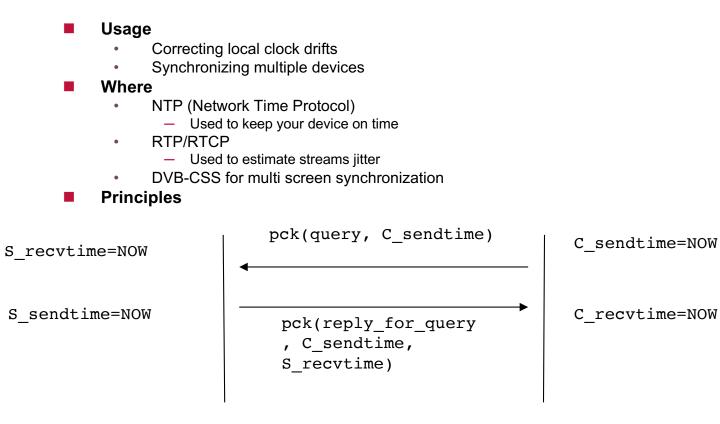
Device	Drift in parts/million (ppm)	Drift (ms/min)
Apple iPad 2 Wi-Fi	+11.96	+0.72
Apple iPhone 6+	+416.84	+25.01
Asus Nexus 7 2012	+2.92	+0.18
LG Nexus 4 (rev. 10)	+6.74	+0.40
LG Nexus 5	+6.44	+0.39
Samsung Galaxy Nexus	+79.67	+4.78
Samsung Galaxy Note 10.1	+17.03	+1.02
Samsung Galaxy S	+4.33	+0.26
Samsung Galaxy S2	+273.93	+16.44

http://protyposis.net/clockdrift/high-precision-audio-drift-measurements-with-gps/

Trusting a clock

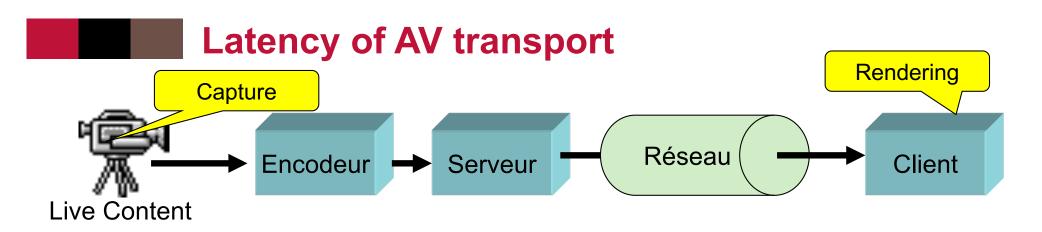
Send encoder clock

- MPEG-2 TS "Program Clock Reference"
- Works fine if no jitter


Locally rebuild the clock

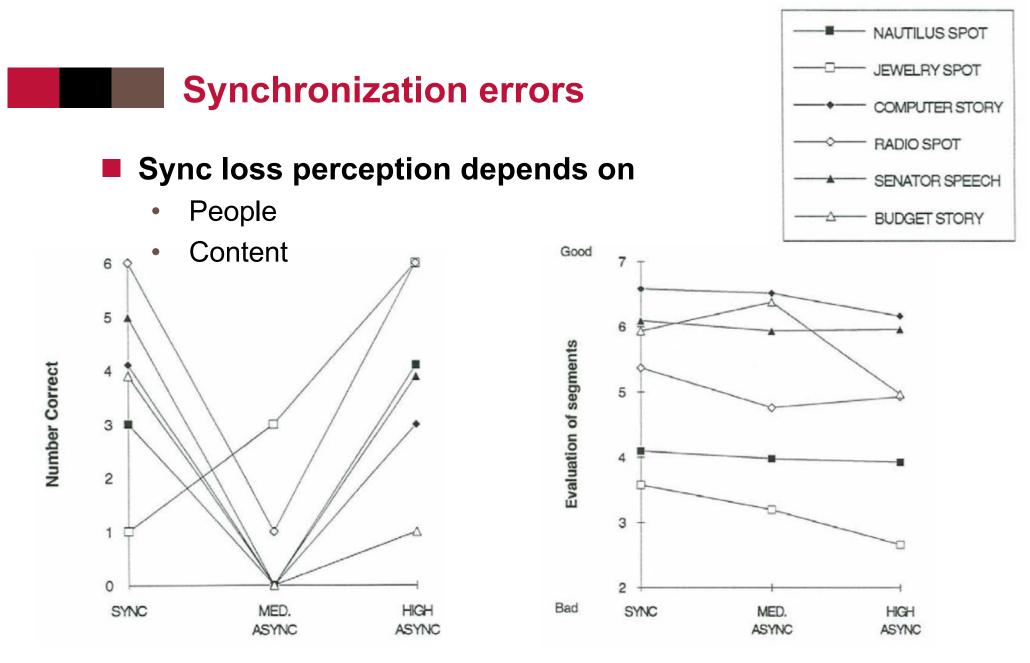
- Get anchor time
 - Source/server Time $T_{\rm S}$ for given media time $T_{\rm M}$
 - usually using NTP
 - But not error-prone
- Use system or audio clock once anchor is found
- Estimate drift
 - compare to world clock (UTC, GPS) on regular basis

Assume no drift at all at the encoder side !


Querying clocks

delay = (S_recvtime - C_sendtime + C_recvtime - S_sendtime) / 2

- Symmetrical delays are assumed
- A few exchanges are usually required


- Audio Capture
 - Sound card captures K (>1) samples per cycle
- Pre-encoding
 - Audio encoder consumes N (!= K) samples per cycle
 - Additional delay to setup for complete audio chunk for the encoder
- Encoding
 - Not instantaneous
 - Video encoding using bi-directional coding
 - Additional delay to buffer P (resp. B) frames before coding B (resp. hierarchical B) frames
- Packetization
 - More or less complex, depending on the transport format
- Networking
 - Delivery time > 0
 - Over IP:
 - Potentially different path (and delays) for audio and video streams
 - Packets may arrive out of order
 - Jitter: variation of the delivery time

Client side

- De-jittering buffers
- Decoding buffers
- Audio card feeding

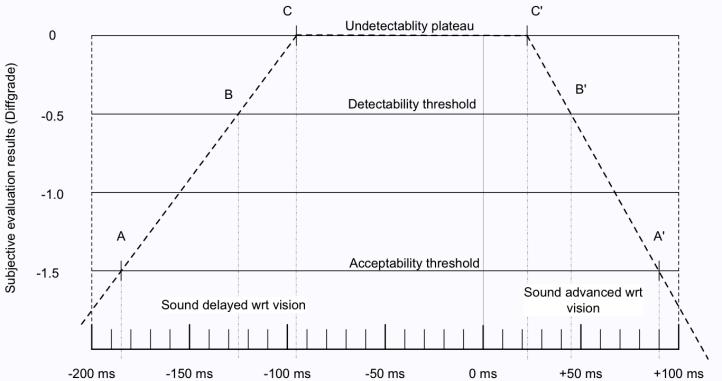
TELECOM ParisTect

Effects of Audio-Video Asynchrony on Viewer's Memory, Evaluation of Content and Detection Ability Standford University

TELECOM

Impact of Synchronization Errors

Various effects


- Negative evaluation of the content
- Async content better remembered
- Regardless of delay perception
- Human AV sync perception
 - Used to sound being late / visual (speed of sound vs speed of light)
 - Discomfort if sound ahead of the video

AV Transport

AV Synchronization in practice

Acceptability Window

- (audio video) timing
- +90ms to -185ms

ITU-R BT.1359 Figure 2

AV Transport

10/01/2018

AV Synchronization in practice

Digital TV

- EBU Recommendation R37
 - Advance audio max 40 ms
 - Delay audio max 60 ms
- ATSC IS-191
 - Advance audio max 45 ms
 - Delay audio max 75 ms

Video conferencing

- Similar numbers
- Sensibility depends on image resolution and quality!!

Precise Synchronization: advanced cases

New service types

- Scalable coding
 - Per layer (eg SVC/SHVC): switch SD -> HD, SNR
 - Multiple Description Coding (MDC)
- 3D Services
 - Views are coded and transported independently

New needs for synchronization:

- Decoding synchronization : no errors allowed !
- If delay on one stream
 - Broken decoding (multi-layer coding)
 - Broken Reconstruction (misalignment of left/right views)

Bidirectional Synchronization

Delays involved

- Downlink and uplink delay
- (capture + coding + transport + decoding + rendering) * 2

Depends on application

• Medical, video-surveillance, remote working, gaming

Traditional Conferencing

- ~ 200 up to 400 ms round-trip
 - 100 up to 200 ms

« Hard-interactivity »

- <100 ms round-trip</p>
 - 50 ms delay

AV Transport

Exercices

AV Transport

Raw Video

- Compute the bitrate of an uncompressed HD stream, 25 fps, interlaced, 4:2:0, 8 bit ?
- What would the bitrate in progressive mode ?

Compute the bitrate of an uncompressed UHD stream, 50 fps, progressive, 4:2:0, 8 bit ? 4:2:2, 8 bit ?

Compute the raw bitrate of an uncompressed UHD stream, 50 fps, progressive, 4:2:0, 8 bit ? 4:2:2, 8 bit ?

Compute the raw bitrate of an uncompressed UHD stream, 50 fps, progressive, 4:2:0, 10 bit ? What assumption do you make on byte alignment?

AV Transport

Compute the bitrate of

- an uncompressed audio stream stereo, 44100 Hz, 16bit ?
- an uncompressed audio stream 5.1, 48000 Hz, 16bit ?

How many bytes of uncompressed data does an AAC access unit contain for a stereo stream 44100 Hz, 16bit

What is the duration of an AAC access unit of a stereo stream 44100 Hz, 24bit, 5.1 channels ?

DTO

A	U	DTS	CTS	Size	RAP	Offset
	1	0	2000	249941	1	50480
	2	2000	8000	31166	0	300421
	3	4000	4000	3579	0	331587
	4	6000	6000	3926	0	335166
	5	8000	14000	82795	0	339092
	6	10000	10000	4753	0	421887
	7	12000	12000	4847	0	426640
	8	14000	20000	57419	0	431487
	9	16000	16000	4317	0	488906
	10	18000	18000	4453	0	493223
	11	20000	26000	77765	0	505763
	12	22000	22000	5318	0	583528
	13	24000	24000	5592	0	588846
	14	26000	32000	59532	0	594438
	15	28000	28000	4156	0	653970
	16	30000	30000	4742	0	658126
	17	32000	38000	59661	0	662868
	18	34000	34000	5227	0	722529
	19	36000	36000	5399	0	
	20		44000		0	
	21		40000	6582	0	
	22	42000	42000	6674	0	839723
	23		50000		0	
	24		46000	6445	0	
	25		48000		0	
	26				0	
	27		52000		0	
	28		54000		0	
	29		62000		0	
	30		58000		0	
	31		60000		0	
	32		66000		0	
	33		64000		0	
	34		68000		1	
	35		74000		0	
	36				0	
	37		72000		0	
	38		80000		0	
	39		76000		0	
	40		78000		0	
	41				0	
	42	82000	82000	8731	0	1807467
	63	10/01/20 ⁻	18	Inst	itut Mi	nes-Télécom

- What is the framerate of the video?
- What is the average gop length in second?
- Comment the CTS value of the first AU
- Comment the GOP pattern

Timescale 50000

AV Transport

AU VIDEO DT	s a	CTS S	Size	RAP	AU AUDIO	DTS	C	TS	Size	RAP
1	0	2000	249941	1		1	0	C	334	1
2	2000	8000	31166	0	2	2	1024	1024	492	1
3	4000	4000	3579	0	3	3 2	2048	2048	456	1
4	6000	6000	3926	0	4	4 :	3072	3072	400	1
5	8000	14000	82795	0	Ę	5 4	4096	4096	6 457	1
6	10000	10000	4753	0	6	6 !	5120	5120	444	1
7	12000	12000	4847	0	1	7 (6144	6144	502	1
8	14000	20000	57419	0	8	3	7168	7168	471	1
9	16000	16000	4317	0	ę) (8192	8192	. 414	1

Timescale 50000

Timescale 44100

- Comment on audio timescale
- How would you describe the AV synchronization for this content ?

