

Institut Mines-Télécom

Wavelet-based image compression

Marco Cagnazzo

Multimedia Compression - MN907

Introduction

Discrete wavelet transform and multiresolution analysis Filter banks and DWT Multiresolution analysis

Images compression with wavelets EZW JPEG 2000

🔂 IP PARIS

Introduction

Discrete wavelet transform and multiresolution analysis

Images compression with wavelets

D IP PARIS

Signal analysis

Signal analysis: similitude to "atoms" φ_k(t) or φ_k[t] (if time is discretized)

Similitude: scalar product

$$c[k] = \langle x[t], \phi_k[t] \rangle$$

- Projection over a set of signals
- Basis change
- Linear Transform

🔂 IP PARIS

🚫 IP PARIS

07.12.20

6/98

🚫 IP PARIS

TELECOM Paris

梁]] 翻

07.12.20

8/98

Wavelets and images : Motivations

Image model : trends + anomalies

🔀 IP PARIS

9/98 07.12.20 Une école de l'IMT

Wavelets and images : Motivations

Image model : trends + anomalies

🔀 IP PARIS

9/98 07.12.20 Une école de l'IMT

Wavelets and images : Motivations

Image model : trends + anomalies

🔀 IP PARIS

9/98 07.12.20 Une école de l'IMT

Introduction

DWT and MRA Images compression with wavelets

Wavelets and images : Motivations

Anomalies :

- Abrupt variations of the signal
- High frequency contributions
- Objects' contours
- Good spatial resolution
- Rough frequency resolution
- Trends :
 - Slow variations of the signal
 - Low frequency contributions
 - Objects' texture
 - Rough spatial resolution
 - Good frequency resolution

Wavelets and images : Motivations

Signal model: an image row

🔀 IP PARIS

Wavelets and images : Motivations

Signal model: an image row

🔀 IP PARIS

Wavelets and images : Motivations

Signal model: an image row

🔀 IP PARIS

Wavelets and Multiple resolution analysis

- Approximation: low resolution version
- "Details": zeros when the signal is polynomial

Outline

Filter banks and DWT Multiresolution analysis

Introduction

Discrete wavelet transform and multiresolution analysis Filter banks and DWT Multiresolution analysis

Images compression with wavelets

🔂 IP PARIS

Filter banks and DWT Multiresolution analysis

1D filter banks

Decomposition

Analysis filter bank

2
$$\downarrow$$
 : decimation : $c[k] = \tilde{c}[2k]$

🚫 IP PARIS

Filter banks and DWT Multiresolution analysis

Reconstruction

Synthesis filter bank

2 \uparrow : interpolation operator, doubles the sample number

$$\hat{c}[k] = egin{cases} c[k/2] & ext{if } k ext{ is even} \ 0 & ext{if } k ext{ is odd} \end{cases}$$

🔂 IP PARIS

Filter banks and DWT Multiresolution analysis

- Perfect reconstruction (PR)
- FIR
- Orthogonality
- Vanishing moments
- Symmetry

Perfect reconstruction conditions

We want PR after synthesis and analysis filter banks : $\forall k \in \mathbb{Z}$,

$$\widetilde{\mathsf{x}}_{k}=\mathsf{x}_{k+\ell}\Longleftrightarrow\widetilde{\mathsf{X}}\left(z
ight)=z^{-\ell}\mathsf{X}\left(z
ight)$$

🔁 IP PARIS

Filter banks and DWT Multiresolution analysis

Z-domain relationships

filter
$$\tilde{C}(z) = \sum_{n=-\infty}^{\infty} \tilde{c}_n z^{-n} = H_0(z) X(z)$$

decimation $C(z) = \frac{1}{2} \left[\tilde{C} \left(z^{1/2} \right) + \tilde{C} \left(-z^{1/2} \right) \right]$
interpolation $\hat{C}(z) = C \left(z^2 \right)$
output $\tilde{X}(z) = F_0(z) C \left(z^2 \right) + F_1(z) D \left(z^2 \right)$

$$\widetilde{X}(z) = \frac{1}{2} [F_0(z) H_0(z) + F_1(z) H_1(z)] X(z) + \frac{1}{2} [F_0(z) H_0(-z) + F_1(z) H_1(-z)] X(-z)$$

🚫 IP PARIS

Filter banks and DWT Multiresolution analysis

PR conditions in Z

 $\forall k \in \mathbb{Z},$

$$\begin{split} T(z) = & H_0(z) \, F_0(z) + H_1(z) \, F_1(z) = 2z^{-\ell} & \text{Non distortion (ND)} \\ A(z) = & H_0(-z) \, F_0(z) + H_1(-z) \, F_1(z) = 0 & \text{Aliasing cancelation (AC)} \end{split}$$

🔂 IP PARIS

Filter banks and DWT Multiresolution analysis

Perfect reconstruction conditions

Matrix form

If the analysis filter bank is given, the synthesis one is determined by:

$$\begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \cdot \begin{bmatrix} F_0(z) \\ F_1(z) \end{bmatrix} = \begin{bmatrix} 2z^{-\ell} \\ 0 \end{bmatrix}$$

We need that the modulation matrix is invertible, ie.

$$orall z\in\mathbb{C}:|z|=1,\quad \Delta\left(z
ight)=H_{0}(z)H_{1}(-z)-H_{1}(z)H_{0}(-z)
eq0$$

D IP PARIS

Filter banks and DWT Multiresolution analysis

Perfect reconstruction conditions

Synthesis filter bank If $\Delta(z) \neq 0$ = on the unit circle, then

$$F_{0}(z) = \frac{2z^{-\ell}}{\Delta(z)}H_{1}(-z)$$
$$F_{1}(z) = -\frac{2z^{-\ell}}{\Delta(z)}H_{0}(-z)$$

Question: if the analysis FB (AFB) is made up by FIR, how to impose that the synthesis FB (SFB) is FIR as well?

🐼 IP PARIS

Perfect reconstruction with FIR filters

In order to F_0 , F_1 be sum of powers, $\Delta(z)$ must be a single power of z. A sufficient condition is the alternating sign (AS) condition:

$$F_0(z) = H_1(-z)$$

 $F_1(z) = -H_0(-z)$

Exercise: find the relationships between the analysis and synthesis FB in the time domain; justify the name "AS". Exercise: show that AS implies AC.

IP PARIS

Filter banks and DWT Multiresolution analysis

- AS assures that, if AFB is FIR, SFB is FIR also, and AC is satisfied
- ▶ Still we need to find *H*₀ and *H*₁ such that ND is satisfied
- Typically we choose some structure for H₀ and H₁ and we use ND to derive the first from the second

• QMF:
$$H_1(z) = H_0(-z)$$

• CQF:
$$H_1(z) = -z^{-(N-1)}H_0(-z^{-1})$$

Biorthogonal

IP PARIS

Filter banks and DWT Multiresolution analysis

QMF and CQF are orthogonal, which assures energy conservation:

$$\sum_{k=-\infty}^{\infty} (x_k)^2 = \sum_{k=-\infty}^{\infty} (c_k)^2 + \sum_{k=-\infty}^{\infty} (d_k)^2$$

 \Rightarrow reconstruction error = quantization error on DWT coefficients For bi-orthogonal filters, the reconstruction errors is a weighted sum of the quantization errors on the DWT subbands, with suitable weights ω_i

Filter banks and DWT Multiresolution analysis

Vanishing moments

- Vanishing moments (VM) represent filter ability to reproduce polynomials: a filter with p VM can represent polynomials with degree < p</p>
- The High-pass filter will not respond to a polynomial input with degree < p</p>
- In this case all the signal information is preserved in the approximation signal (half the samples)
- A filter with p VM has at least 2p taps

🔁 IP PARIS

Filter banks and DWT Multiresolution analysis

Borders problem

- Filterbank properties such as we saw, are valid for infinite-size signals
- We are interested in finite support signals
- How to interpret the previous results for finite support signals?

🔂 IP PARIS

Filter banks and DWT Multiresolution analysis

Borders problem

- Filterbank properties such as we saw, are valid for infinite-size signals
- We are interested in finite support signals
- How to interpret the previous results for finite support signals?
- Zero padding would introduce a coefficient expansion
- Filtering an N-size signal with an M-size produces a signal with size N + M - 1

Filter banks and DWT Multiresolution analysis

Borders problem

- Filterbank properties such as we saw, are valid for infinite-size signals
- We are interested in finite support signals
- How to interpret the previous results for finite support signals?
- Zero padding would introduce a coefficient expansion
- Filtering an N-size signal with an M-size produces a signal with size N + M - 1
- Periodization?
- Symmetrization?

Introduction

DWT and MRA

Filter banks and DWT Multiresolution analysis

Images compression with wavelets

Une école de l'IMT

Wavelet-based image compression

TELECOM Paris

Borders problem: Periodization

- A signal x of support N is considered as a periodic signal x of period N
- Filtering \tilde{x} with h_0 results into a periodic output \tilde{y}
- \tilde{y} has the same period N as \tilde{x}
- So we need to compute just N samples of \tilde{y}
- However, periodization introduces "jumps" in a regular signal

🔂 IP PARIS

Filter banks and DWT Multiresolution analysis

Borders problem: Periodization

🚫 IP PARIS

Filter banks and DWT Multiresolution analysis

Borders problem: Symmetry

- Symmetrization before periodization reduces the impact on signal regularity
- But it doubles the number of coefficients...

D IP PARIS
Borders problem: Symmetry

- Symmetrization before periodization reduces the impact on signal regularity
- But it doubles the number of coefficients...
- Unless the filters are symmetric, too
 - We use x as half-period of \tilde{x}_s
 - \tilde{x}_s has a period of 2N samples
 - Filtering \tilde{x}_s with h_0 , produces \tilde{y}_s
 - If h₀ is symmetric, ỹ_s is periodic and symmetric, with period 2N: we only need to compute N samples

Filter banks and DWT Multiresolution analysis

Borders problem: Symmetry

😵 IP PARIS

Filter banks and DWT Multiresolution analysis

Haar filter

- Symmetric
- Orthogonal (Haar is both QMF and CQF)
- ► VM = 1
 - Only capable to represent piecewise constant signals

🔂 IP PARIS

Summary: perfect reconstruction and borders

- Convolution involves coefficient expansion
- Solution: circular convolution
 - Circular convolution allows to reconstruct an N-samples signal with N wavelet coefficients
 - The periodization generates borders discontinuities, i.e. spurious high frequencies coefficients that demand a lot of coding resources
- Solution: Symmetric periodization
 - No discontinuities
 - Does it double the coefficient number?
 - No, if the filter is symmetric!

Bad news: the only orthogonal symmetric FIR filter is Haar!

Filter banks and DWT Multiresolution analysis

Biorthogonal filters

Cohen-Daubechies-Fauveau filters

With biorthogonal filters, if h_0 has p VM and f_0 has \tilde{p} VM, the filter has at least $p + \tilde{p} - 1$ taps.

The CDF filters have the following properties:

- They are symmetric (linear phase)
- They maximize the VM for a given filter length
- They are close to orthogonality (weights ω_i are close to one)

They are by far the most popular in image compression

Filter banks and DWT Multiresolution analysis

DWT and MRA

A multiresolution analysis (MRA) is a set of subspaces V_j in $L^2(\mathbb{R})$ such that:

- **1**. $\forall j \in \mathbb{Z}, V_j \subset V_{j+1}$
- **2**. $\bigcap_{j} V_{j} = \{0\}$
- **3**. $\overline{\bigcup_j V_j} = L^2(\mathbb{R})$
- **4.** $f(t) \in V_j \Leftrightarrow f(2t) \in V_{j+1}$
- **5.** $f(t) \in V_0 \Leftrightarrow \forall k \in \mathbb{Z}, f(t-k) \in V_0$
- 6. $\exists \phi \in V_0 : \{\phi(t-k)\}_{k \in \mathbb{Z}}$ is a basis of V_0

 ϕ is called *father wavelet*.

D IP PARIS

MRA and DWT

- The projection f_j of f into V_j is an approximation of f
- Increasing j, we increase the resolution
- The projection f_j of f into V_j converges to f:

$$f_j \rightarrow_j f$$

- MRA implies $\phi_{j,k} = 2^{j/2}\phi(2^jt k)$ generates a basis of V_j
- $\Delta f = f_{j+1} f_j$ are the details at level j
- The space of details is W_j

$$\blacktriangleright V_j \oplus W_j = V_{j+1}$$

$$\blacktriangleright V_j = V_0 \oplus W_0 \oplus W_1 \oplus \ldots \oplus W_{j-1}$$

🔁 IP PARIS

MRA and DWT

- Projection of f over V_0 : approximation
- Projection of f over W_j: details allowing to increase the resolution (pass from V_{j-1} to V_j
- The basis of W_j is generated by $\psi_{j,k}(t) = 2^j \psi(2^j t k)$
- $\psi(t)$ is the mother wavelet
- $\psi(t) = \sqrt{2} \sum_{k} b(k) \phi(2t k)$ (wavelet equation)
- $\phi(t) = \sqrt{2} \sum_{k} a(k) \phi(2t k)$ (dilation equation)
- c and d are related as CQF: $B(z) = -z^{-(N-1)}A(-z^{-1})$
- ► Thus ψ_{j,k}(t) are a basis for L²(ℝ) and the coefficients of f can be generated through a FB

🔂 IP PARIS

Filter banks and DWT Multiresolution analysis

1D Multiresolution analysis

Decomposition

Three levels wavelet decomposition structure

🔂 IP PARIS

Introduction DWT and MRA

Filter banks and DWT Multiresolution analysis

Images compression with wavelets

Multiresolution Analysis 1D

D IP PARIS

Introduction DWT and MRA

Filter banks and DWT Multiresolution analysis

Images compression with wavelets

Reconstruction

Reconstruction from wavelet coefficients

D IP PARIS

Filter banks and DWT Multiresolution analysis

2D AMR

2D Filter banks for separable transform One decomposition level

🛞 IP PARIS

Filter banks and DWT Multiresolution analysis

2D-DWT subbands: orientations

(A), (H), (V) and (D) respectively correspond to *approximation* coefficients, *horizontal*, *vertical* and *diagonal* detail coefficients.

🔂 IP PARIS

Introduction DWT and MRA

Filter banks and DWT Multiresolution analysis

Images compression with wavelets

2D AMR: multiple levels

Three levels of separable 2D-AMR.

🛞 IP PARIS

Filter banks and DWT Multiresolution analysis

2D-DWT subbands: orientations

🚫 IP PARIS

Filter banks and DWT Multiresolution analysis

Example

45/98 07.12.20

Une école de l'IMT

Wavelet-based image compression

😵 IP PARIS

Filter banks and DWT Multiresolution analysis

TELECOM Paris	
三 務開	l

46/98	07.12.20	Une école de l'IMT	Wavelet-based image compression
-------	----------	--------------------	---------------------------------

Filter banks and DWT Multiresolution analysis

Example

47/98 07.12.20

Une école de l'IMT

Wavelet-based image compression

Filter banks and DWT Multiresolution analysis

Example

😥 IP PARIS

Filter banks and DWT Multiresolution analysis

Example

😥 IP PARIS

Filter banks and DWT Multiresolution analysis

Example

😥 IP PARIS

50/98 07.12.20 Une

Filter banks and DWT Multiresolution analysis

Example

😥 IP PARIS

EZW JPEG 2000

Outline

Introduction

Discrete wavelet transform and multiresolution analysis

Images compression with wavelets EZW JPEG 2000

D IP PARIS

EZW JPEG 2000

Compression with DWT

Methods based on inter-scale dependencies:

- EZW (Embedded Zerotrees of Wavelet coefficients),
- SPIHT (Set Partitioning in Hierarchical Trees)
- Tree-based representation of dependencies
- Advantages: good exploitation of inter-scale dependencies, low complexity
- Disadvantage: no resolution scalability
- Methods not based on inter-scale dependencies
 - Explicit bit-rate allocation among subbands
 - Entropy coding of coefficients
 - Advantages: Good exploitation of intra-scale dependencies, random access, resolution scalability
 - Disadvantage: no exploitation of inter-scale dependencies

EZW JPEG 2000

Embedded Zerotrees of Wavelet coefficients

Main characteristics

- Quality scalability (i.e. progressive representation)
- Lossy-to-lossless coding
- Small complexity
- Rate-distortion performance much better than JPEG above all at small rates

EZW JPEG 2000

Progressive representation of DWT coefficients

- Each new coding bit must convey the maximum of information
- Each new coding bit must reduce as much as possible distortion

⚠

- We first send the largest coefficients
- Problem: localization overhead

D IP PARIS

EZW JPEG 2000

Example: an image and its wavelet coefficients

Introduction DWT and MRA

EZW JPEG 2000

Images compression with wavelets

Progressive representation: subband order

😵 IP PARIS

EZW JPEG 2000

EZW Algorithm

- The subband scan order alone is not enough to assure that largest coefficients are sent first
- We need to localize the largest coefficients
- Without having to send explicit localization information
- Idea: to exploit the inter-band correlation to predict the position of non-significant coefficients
- If the prediction is correct we save many coding bits (for all the predicted coefficients)

Introduction DWT and MRA

EZW JPEG 2000

Images compression with wavelets

Zero-tree of wavelet coefficients

DIP PARIS

59/98 07.12.20

Une école de l'IMT

Wavelet-based image compression

EZW JPEG 2000

EZW idea

- Auto-similarity : When a coefficient is small (below a threshold) it is probable that its descendants are small as well
- In this case we use a single coding symbol to represent the coefficient and all its descendants. If c and all its descendants are smaller than the threshold, c is called a zero-tree root
- ▶ With just one symbol, (ZT) we code (1 + 4 + 4² + ... + 4^{N-n}) coefficients
- The localization information is implicit in the significance information

EZW **JPEG 2000**

EZW algorithm

- 1. k = 0
- 2. $n = |\log_2(|c|_{\max})|$
- 3. $T_k = 2^n$
- 4. while (rate < available rate)
 - Dominant pass
 - Refining pass

$$T_{k+1} \leftarrow T_k/2$$

$$k \leftarrow k+1$$

$$k \leftarrow k+1$$

5. end while

D IP PARIS

EZW JPEG 2000

Dominant pass

- For each coefficient *c* (in the scan order)
- If $|c| \ge T_n$, the coefficient is significant
 - ▶ If *c* > 0 we encode SP (Significant Positive)
 - If c < 0 we encode SN (Significant Negative)</p>
- If $|c| < T_n$, we compare all its descendants with the threshold
 - If no descendant is significant, c is coded as a zero-tree root (ZT)
 - Otherwise the coefficient is coded as Isolated Zero (IZ)

EZW JPEG 2000

- We encode a further bit for all significant coefficients
- This is equivalent to halve the quantization step

D IP PARIS

EZW JPEG 2000

Iteration and termination

- The k-th dominant pass allows to encode the k-th bit-plane
- A significant coefficient *c* is such that $2^k \le |c| < 2^{k+1}$
- For the next step we halve the threshold: it is equivalent to pass to the next bitplane
- Algorithm stops when
 - the bit budget is exhausted; or when
 - all the bitplanes have been coded

EZW JPEG 2000

EZW Algorithm: summary

- Bitplane coding: at the *k*-th pass, we encode the bitplane $\log_2 T_k$
- Progressive coding: each new bitplane allows refining the coefficients quantization
- Lossless coding of significance symbols
- Lossless-to-lossy coding: When an integer transform is used, and all the bitplanes are coded, the original image can be restored with zero distortion

EZW JPEG 2000

EZW Algorithm: Example

26	6	13	10	
-7	7	6	4	
4	-4	4	-3	
2	-2	-2	0	

$$T_0 = 2^{\lfloor \log_2 26 \rfloor} = 16$$

EZW JPEG 2000

EZW Algorithm: Example

26	6	13	10	
-7	7	6	4	
4	-4	4	-3	
2	-2	-2	0	

$$T_0 = 2^{\lfloor \log_2 26 \rfloor} = 16$$

Bitstream:

SP	ZR	ZR	ZR	1								
IZ	ZR	ZR	ZR	SP	SP	IZ	ΙZ	0	1	0		
SP	SN	SP	SP	SP	SP	SN	ΙZ	ΙZ	SP	ΙZ	ΙZ	ΙZ

EZW JPEG 2000

JPEG2000

- ▶ JPEG2000 aims at challenges unresolved by previous standards:
- ▶ Low bit-rate coding: JPEG has low quality for *R* < 0.25 bpp
- Synthetic images compression
- Random access to image parts
- Quality and resolution scalability

EZW JPEG 2000

New functionalities

- Region-of-interest (ROI) coding
- Quality and resolution scalability
- Tiling
- Exact coding rate
- Lossy-to-lossless coding

EZW JPEG 2000

Algorithm

JPEG2000 is made up of two tiers

- First tier
 - DWT and quantization
 - Lossless coding of codeblocks
- Second tier
 - EBCOT: embedded block coding with optimized truncation
 - Scalability (quality, resolution) and ROI management

🔁 IP PARIS

EZW JPEG 2000

Quantization in JPEG2000

- DWT coefficients are encoded with a very fine quantization step
- For the lossless coding case, DWT coefficients are integers, and they are not quantified
- In summary, it is not in the quantization step that the really lossy operations are performed
- The lossy coding is performed by the bitstream truncation of Tier 2

IP PARIS

EZW JPEG 2000

EBCOT

Embedded Block Coding with Optimized Truncation

- Each subband is split in equally sized blocks of coefficients, called codeblocks
- The codeblocks are losslessly and independently coded with an arithmetic coder
- We generate as much bitstreams as codeblocks in the image

IP PARIS

EZW JPEG 2000

Bitplane coding

Most significant bitplane

EZW JPEG 2000

Bitplane coding

Second bitplane

EZW JPEG 2000

Bitplane coding

Third bitplane

EZW JPEG 2000

Bitplane coding

Fourth bitplane

EZW JPEG 2000

Bitplane coding

Fifth bitplane

77/98

EZW JPEG 2000

Example of bitstreams associated to codeblocks

TELECOM Paris

彩腳

EZW JPEG 2000

EBCOT

Optimization

- If we keep all the bitstreams of all the codeblocks, we end up with a huge bitrate
- We have to truncate the bitstream to attain the target bit-rate
- Problem: how to truncate the bitstreams with a minimum resulting distortion?

min
$$\sum_{i} D_{i}$$
 subject to

 $\sum_{i} R_{i} \leq R_{\text{tot}}$

Solution : Lagrange multiplier

$$J = \sum_{i} D_{i} + \lambda \left(\sum_{i} R_{i} - R \right)$$

EZW JPEG 2000

EBCOT

Rate-distortion curve per each codeblock

EZW JPEG 2000

EBCOT

Rate-distortion curve per each codeblock

EZW JPEG 2000

Embedded block coding with optimized truncation

$$\frac{\partial D_i}{\partial R_i} = -\lambda$$

- The value of the Lagrange multiplier can be find by an iterative algorithm.
- We can have several truncations for several target rates (quality scalability)

IP PARIS

EZW JPEG 2000

Example of bit-rate allocation with EBCOT

Allocation for maximal quality and minimal resolution

EZW JPEG 2000

Example of bit-rate allocation with EBCOT

Allocation for maximal quality and medium resolution

EZW JPEG 2000

Example of bit-rate allocation with EBCOT

Allocation for maximal quality and maximal resolution

EZW JPEG 2000

Example of bit-rate allocation with EBCOT

Allocation for perceptual quality and maximal resolution

EZW JPEG 2000

Example of bit-rate allocation with EBCOT

Allocation for a given bit-rate, maximal quality and resolution

EZW JPEG 2000

Example of bit-rate allocation with EBCOT

Allocation pour several layers and maximal resolution

EZW JPEG 2000

Comparison JPEG / JPEG2000

Image Originale, 24 bpp

DIP PARIS

87/98 07.12.20

Une école de l'IMT

Wavelet-based image compression

EZW JPEG 2000

Comparison JPEG / JPEG2000

Rate: 1bpp

EZW JPEG 2000

Comparison JPEG / JPEG2000

Rate: 0.75bpp

EZW JPEG 2000

Comparison JPEG / JPEG2000

Rate: 0.5bpp

EZW JPEG 2000

Comparison JPEG / JPEG2000

Rate: 0.3bpp

EZW JPEG 2000

Comparison JPEG / JPEG2000

Rate: 0.2bpp

EZW JPEG 2000

Comparison JPEG / JPEG2000

Rate: 0.2bpp pour JPEG, 0.1 pour JPEG2000

EZW JPEG 2000

Error effect: JPEG

JPEG, $p_E = 10^{-4}$

JPEG, $p_E = 10^{-4}$

EZW JPEG 2000

Error effect: JPEG and JPEG 2000

JPEG 2000, $p_E = 10^{-4}$

🔀 IP PARIS

EZW JPEG 2000

Error effect: JPEG and JPEG 2000

JPEG 2000, $p_E = 10^{-3}$

🔀 IP PARIS

EZW JPEG 2000

Image coding and robustness

- Markers insertion
- Markers period
- Marker emulation prevention
- Trade-off between robustness and rate

EZW JPEG 2000

Error robustness in JPEG2000

- Data priorization is possible
- No dependency among codeblocks
 - No error propagation
- No block-based transform
 - No blocking artifacts

